
LOG4SHELL 4 MONTHS LATER:

LogShell 4 Months Later:
Are You Still Vulnerable?

Log4Shell Timeline

BY YOTAM PERKAL, HEAD OF VULNERABILITY RESEARCH

 It has been over 4 months since the first
publication of Log4Shell (CVE-2021-44228), one

of the most critical vulnerabilities in recent years,
due to a deadly trifecta of factors:

1. Huge attack surface — Millions of vulnerable
Java applications worldwide according to
most estimates.

2. Ease of exploitation — No privileged
access or special configuration is needed,
all an attacker has to do in order to exploit
the vulnerability is to locate an input field
that gets logged and write a simple string.

3. Severe potential impact — With a CVSS
v3 score of 10, a successful exploit of the
Log4Shell vulnerability will provide an
attacker the ability to execute arbitrary
code and potentially take full control of
the system.

www.rezilion.com LOG4SHELL 4 MONTHS LATER: Are You Still Vulnerable? | 1

Rezilion
Research

Log4j Download Dashboard SOURCE: IBM AND THE PONEMON INSTITUTE

LOG4J LATEST STATISTICS

45,169,939

Total Downloads Since Dec. 10, 2021
39% vulnerable

36%

Vulnerable Downloads Last 24 Hours
412,686 total downloads

www.rezilion.com LOG4SHELL 4 MONTHS LATER: Are You Still Vulnerable? | 2

Rezilion researchers decided to assess the current potential attack surface of this vulnerability
today, 4 months later, after the dust settled. Due to the massive amount of media coverage that
the Log4Shell vulnerability has received, we hoped that the majority of applications would already
be patched. We assumed finding services that are still vulnerable would be challenging.

Unfortunately, we were wrong. We learned that the landscape is far from ideal and many
applications vulnerable to Log4Shell still exist in the wild.

In this report, we will examine our findings and discuss the need for widespread industry support
in the continued battle to minimize future potential exploitation.

A Big Hill to Climb
Before we dive into the actual research there are few data points that emphasize how much work i
s yet to be done.

The first is from Open Source Insights, a Google service which scans millions of open source
packages, builds their dependency graphs, and annotates them with information about ownership,
licenses, popularity, and other metadata. When exploring the components affected by the Log4Shell
vulnerability, i.e components using org.apache.logging.log4j:log4j-core, it appears that out
of a total of 17.84K affected packages, only 7.14K are patched for Log4Shell. This means that almost
60% of vulnerable packages are not yet patched!

Remote code injection in Log4j

SOURCE: https://deps.dev/advisory/GHSA/GHSA-jfh8-c2jp-5v3q, April 20, 2022

At this point you might be thinking, “Ok, but perhaps the majority of these unpatched packages are
simply not being used (old, esoteric, or unpopular packages) and therefore do not pose an actual
risk.” Let’s explore that hypothesis.

Sonatype maintains a Log4j vulnerability resource center which tracks the amount of downloads of
Log4j and provides statistics based on version, geographic location, and more.

As you can see in the below image, as of April 20, 2022, 36% of the Log4j versions actively

https://deps.dev/
https://deps.dev/advisory/GHSA/GHSA-jfh8-c2jp-5v3q
https://deps.dev/advisory/GHSA/GHSA-jfh8-c2jp-5v3q
https://www.sonatype.com/resources/log4j-vulnerability-resource-center

Rezilion
Research

The red area marks the percentage of Log4j
downloads vulnerable to Log4Shell and it has
pretty much plateaued since early February.

So what can explain these concerning statistics?
What are the services that are still pulling these
vulnerable Log4j versions?

Two months after the initial publication, prior to
the Senate hearing about the topic, industry and
open source representatives have attempted
to explain the cause for this high percentage of
vulnerable components downloads. Potential
reasons include:

➞ Downloads by security researchers
trying to analyze the vulnerability. In my
opinion this doesn’t account for such a
high percentage of continuous downloads,
especially at this point in time when public
interest has subsided.

➞ Instances where Log4j was deployed
in applications or networks that aren’t
accessible from the internet, so they
were less of a priority to fix. This is a
misconception as it has been shown that
even systems that are not directly exposed
to the internet can be vulnerable in certain
scenarios. See for example this blog post
from Akamai which states:

“Note, however, that data centers where
all Java servers are internal (namely, not
internet-facing) cannot be considered safe.
While Log4Shell has been mainly perceived
as a means to breach networks, some cases
showed how Java applications running on
internal servers received logs rom internet-
facing servers and ended up being compromised.
Log4Shell can thus be used as easily for lateral
movement as for initial breach.”

SOURCE: https://www.sonatype.com/resources/log4j-
vulnerability-resource-center, April 20, 2022

We believe that one of the main reasons we still
see a high number of vulnerable component
downloads is the fact that people are
unknowingly still using software that relies on
vulnerable versions of Log4j.

This could be attributed to several factors:

➞ Many organizations lack mature vulnerability
management processes and/or visibility
into their software components (Software
Bill of Materials, known as SBOM).

➞ Log4j has proven to be challenging to
detect in production environments.

➞ Use of vulnerable third party software.

Validating Our Assumption:
Log4Shell in Open Source
Software
One of the reasons patching Log4j is
challenging is because detecting it isn’t always
straightforward. Within packaged software
in production environments, Java files (such
as Log4j) can be nested a few layers deep
into other files — which means that a shallow
search for the file won’t find it. Furthermore,
Java applications can be packaged in many
different ways which creates a real challenge
for tools trying to analyze them as they need to
support each and every creative (yet possible)
packaging format. That creates challenges
for tools aiming to detect vulnerable Log4j
components as we have highlighted in a
previous research.

www.rezilion.com LOG4SHELL 4 MONTHS LATER: Are You Still Vulnerable? | 3

https://www.sonatype.com/resources/log4j-vulnerability-resource-center, April 20, 2022
https://www.sonatype.com/resources/log4j-vulnerability-resource-center, April 20, 2022
https://www.rezilion.com/blog/log4j-blindspots-what-your-scanner-is-still-missing/

Rezilion
Research

The problem doesn’t end there. Even if you are
able to detect and patch Log4j in proprietary
applications, when it comes to third party
software (whether commercial or open source),
detection isn’t enough. Even if you are able to
detect a vulnerable third party software, you
will need to wait for the vendor to release an
updated patched version of the software.

As an organization, there are two scenarios in
which you will consume such vulnerable third
party software:

1. You are using the latest version of the
software, yet the vendor hasn’t issued a
patched release.

2. The vendor has issued a patched release,
yet you are still using an outdated version. In
the context of a containerized environment
for example, this can happen by design if
you use version pinning — explicitly setting
the version of the container being pulled.
The main advantage to this approach is
stability and reproducibility of the deployed
software, though when it comes to patching,
it cements the use of the vulnerable version
of the container and requires active action
in order to upgrade as opposed to using the
`latest` tag. In this case, once a new version
is released, it will pull the updated version
with no human interaction.

Methodology
During the first weeks since the publication of Log4Shell several lists of potential vulnerable
applications were compiled and shared. See, for example, this list maintained by the Dutch National
Cyber Security Center (NCSC) or this repository maintained by CISA. Our approach was to try to
examine the latest versions of public containers of these applications and see whether the version of
Log4j in these containers is indeed up-to-date. Using dive, an open source tool for exploring docker
container images, we have verified exactly what version of Log4j is present in each of the containers.

In the second phase, for each container image still containing vulnerable Log4j versions we used
Shodan.io, a popular search engine for internet-connected devices, in order to see how many
vulnerable applications are exposed to the internet.

For that purpose, we ran the containers and identified distinct characteristics of the application
banner and/or the HTTP headers. We applied those to a Shodan.io search for some estimation of the
commonality of these vulnerable applications.

Keep in mind that the majority of this research focuses on a specific aspect of the potential current
attack surface for Log4Shell, servers running open source software. We must assume that there are
also proprietary applications as well as commercial products still running vulnerable versions of
Log4j. We will demonstrate that risk by analyzing publicly facing Minecraft servers.

Results
Overall, we identified over 90,000 potential vulnerable internet facing applications, and believe
that is just the tip of the iceberg in terms of the actual vulnerable attack surface.
The results are divided to 3 categories:

1. Containers that in their latest version, still contain obsolete versions of Log4j.
2. Containers which their latest version is up-to-date yet there is still evidence of previous

versions usage.
3. Publicly facing Minecraft servers, which highlight the risks with outdated proprietary software.

For each container, we noted the total number of high and critical vulnerabilities in the container
as reported by Grype, an open source vulnerability scanner.

www.rezilion.com LOG4SHELL 4 MONTHS LATER: Are You Still Vulnerable? | 4

Note: Actual exploitability of the potentially vulnerable servers was not tested. The results presented below are based on
data from Shodan.io which attempts to associate vulnerabilities with services based on the software version assuming it
is present in the service metadata (see here).

https://github.com/NCSC-NL/log4shell
https://github.com/cisagov/log4j-affected-db
https://github.com/wagoodman/dive
https://www.shodan.io/

Rezilion
Research

1. Containers that in their latest version, still contain obsolete versions of Log4j

** Vulnerable to CVE-2021-45046
*** Vulnerable to CVE-2021-45105

In addition to the Log4j related vulnerabilities, all containers also have a significant number of
additional vulnerabilities even though they are the `latest` versions of their respective docker images.

On average, more than 55% of the vulnerabilities detected in these container images were published
prior to 2020, yet are still alive and kicking.

2. Containers which their latest version is up-to-date yet there are still evidence of previous
versions usage

* Vulnerable to CVE-2021-44228

For the reviewed containers the average time it took for a patched container image to be published
to DockerHub is almost 80 days!

During that time period, anyone pulling the latest version of these containers to their environment
would have effectively pulled and ran services that are vulnerable to Log4Shell.

www.rezilion.com LOG4SHELL 4 MONTHS LATER: Are You Still Vulnerable? | 5

Note: The list of container images highlighted in this research is far from exhaustive as we focused on actively
maintained, popular container images for applications. There are of course hundreds of obsolete container images on
DockerHub which still contain vulnerable versions of Log4j, yet are out of scope for this research.

Container
Name

Apache druid

Apache Solr

Apache Ozone

 Last
Updated

Dec 11, 2021

Mar 30, 2022

Jan 23, 2022

Total Shodan
results

149

1657

115

Total/High/Crit
Vulnerabilities

365/81/26

93/14/9

750/41/6

Vulnerabilities
from Prior

to 2020

147/365 (40%)

46/93 (49%)

592/750 (78%)

Log4j
version

Log4j-core-2.15.0.jar **

Log4j-core-2.16.0.jar ***

log4j-core-2.16.0.jar ***

Container
Name

Log4j version
prior to patch

Patched Version
Release Date

Time to
Patch

Total Shodan
results

Apache Storm Log4j-core-2.11.2.jar * April 1, 2022 101 days 1309

Elasticsearch Log4j-core-2.11.1.jar * Dec. 21, 2021 11 days 21417

Apache
skywalking-oap Log4j-core-2.14.1.jar * April 9, 2022 109 days 101

WSO2 API
Manager Log4j-core-2.13.3.jar* March 28, 2022 97 Days 3309

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45046
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45105
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228

Rezilion
Research

www.rezilion.com LOG4SHELL 4 MONTHS LATER: Are You Still Vulnerable? | 6

Let’s take the Apache Storm example to understand why it took so long for an updated docker
image to be published.

While conducting research on a different topic in mid-February 2022, I noticed that the Apache
Storm official image was still marked as vulnerable to Log4Shell.

I reached out to Docker and was told that they rely on upstream releases in order to publish
updated official images:

https://twitter.com/pyotam2/status/1496178724051505161?s=20&t=38s8BvE1UszGIQu74JCaOg

Rezilion
Research

www.rezilion.com LOG4SHELL 4 MONTHS LATER: Are You Still Vulnerable? | 7

And in fact, up until March 25, 2022 no official Storm release was issued:

This led to the fact that for over 100 days, every Apache Storm consumer using their contarized
application had remained vulnerable to Log4Shell.

But let’s take the case of Elasticsearch for which the patched image took 11 days to be published to
DockerHub. Now the ball is in the consumers hands to update their software and, as we reveal here,
that might be an unrealistic expectation.

According to Shodan.io, there are over 25.6k Elasticsearch servers publicly accessible. Since for
Elasticsearch, Shodan provides accurate version information we were able to determine exactly
how many servers contain vulnerable versions of Log4j. We excluded all non vulnerable versions of
Elasticsearch from the search results (only took into account all 5.x versions, from 6.x.x to 6.8.21, and
from 7.0.0 to 17.15.x) and verified using Dive that the vulnerable versions, in fact, contain the affected
Log4j-core library:

We were left with 21417 Elasticsearch servers which are still vulnerable to Log4Shell. That’s almost 83%.

https://www.elastic.co/blog/new-elasticsearch-and-logstash-releases-upgrade-apache-log4j2
https://www.elastic.co/blog/new-elasticsearch-and-logstash-releases-upgrade-apache-log4j2

Rezilion
Research

www.rezilion.com LOG4SHELL 4 MONTHS LATER: Are You Still Vulnerable? | 8

There are also a lot of applications that are still using Log4j version 1.x (this source says even up
to 10 times more), and falsely assume that that means they do not need to patch as the original
Log4Shell vulnerability (CVE-2021-44228) does not apply for Log4j 1.x.

This is a misconception as version 1.x has been in an end-of-life state since August 2015 (which
means it does not get any security updates), and contains plenty of other vulnerabilities, including
RCE vulnerabilities (trickier to exploit, yet still valid) such as CVE-2021-4104. This should definitely
worry organizations that are still using it. Also see this stack-overflow question that implies this
misunderstanding.

Examples for applications still using Log4j 1.x include:

3. Publicly Facing Minecraft Servers
Using Shodan.io we have identified over 166,000 publicly facing Minecraft servers:

These numbers align with independent research recently conducted by Adrian Zhang. According to
Minecrafts’ official security advisory, the vulnerable versions for Log4Shell are between 1.7 and 1.18.

Container
Name

Log4j
version

DockerHub
Downloads

Total/High/Crit
Vulnerabilities

Vulnerabilities
from Prior to 2020

Bitnami Spark log4j-1.2.17.jar Apr 20, 2021 141/43/11 75/141 (53%)

Bitnami Kafka log4j-1.2.17.jar Apr 20, 2022 92/16/7 50/92 (54%)

Apache zeppelin log4j-1.2.17.jar Feb 28, 2022 249/89/49 108/249 (43%)

Atlassian
Crucible log4j-1.2.17.jar March 13, 2022 365/81/26 147/365 (40%)

https://www.slf4j.org/log4shell.html
https://www.cvedetails.com/cve/CVE-2021-4104/
https://stackoverflow.com/questions/70332054/log4j-1-how-to-mitigate-the-vulnerability-in-log4j-without-updating-version-to
https://blog.bithole.dev/mcmap.html
https://help.minecraft.net/hc/en-us/articles/4416199399693-Security-Vulnerability-in-Minecraft-Java-Edition

Rezilion
Research

www.rezilion.com LOG4SHELL 4 MONTHS LATER: Are You Still Vulnerable? | 9

This means that over 68,000 potentially vulnerable servers are still publicly exposed:

There is a possibility that some of these servers’ maintainers have applied the mitigations which are
recommended by Minecraft. These mitigations do decrease the risk of exploitation, but they are by
no means a comprehensive defense as they rely on disabling MsgLookups, which is stated in several
blog posts as well as in the official Log4j documentation:

“ This page previously mentioned other mitigation measures, but we discovered that these
measures only limit exposure while leaving some attack vectors open.

Other insufficient mitigation measures are: setting system property log4j2.formatMsgNoLookups
or environment variable LOG4J_FORMAT_MSG_NO_LOOKUPS to true for releases >= 2.10, or modifying
the logging configuration to disable message lookups with %m{nolookups}, %msg{nolookups} or
%message{nolookups} for releases >= 2.7 and <= 2.14.1.

The reason these measures are insufficient is that, in addition to the Thread Context attack
vector mentioned above, there are still code paths in Log4j where message lookups could
occur: known examples are applications that use Logger.printf(“%s”,userInput), or
applications that use a custom message factory, where the resulting messages do not implement
StringBuilderFormattable. There may be other attack vectors.

The safest thing to do is to upgrade Log4j to a safe version, or remove the JndiLookup class from
the log4j-core jar.”

https://www.lunasec.io/docs/blog/log4j-zero-day-update-on-cve-2021-45046/#conditions-for-the-vulnerability
https://logging.apache.org/log4j/2.x/security.html#History

Rezilion
Research

www.rezilion.com VULNERABILITY ROUND UP: What Kept Security Busy in Q1 2022 | 10

Exploitation
We have established the fact that there is still a significant attack surface vulnerable to Log4Shell
even 4 months after its initial publication. But should we worry? Are there actually any active
exploitation attempts? The answer is yes.

Active exploitation attempts were discovered very early on (even days prior to the official publication
of the vulnerability). Initial exploitation attempts seen in the wild were aimed at deploying
ransomware and various coin miners, but as time went on evidence of active exploitation of
Log4Shell by various APT groups started to accumulate.

Examples include:

➞ The Chinese state-sponsored espionage group HAFNIUM
➞ Iranian-backed groups APT35 (aka Newscaster) and Tunnel Vision

More recently, active exploitation was also tied to the Chinese APT 41 group and Deep Panda. The
SANS Internet Storm Center has created a honeypot for the detection of exploitation attempts. To
this date, there are still dozens of recorded daily exploitation attempts. See:
https://isc.sans.edu/api/webhoneypotreportsbyurl/jndi:/2022-04-20?json

Historical Precedents
What can we learn from past vulnerabilities’ exposure on the future of Log4Shell? There are quite
a few historical precedents of vulnerabilities that were discovered years ago, yet are still being
exploited to this day.

ShellShock, a family of security vulnerabilities affecting the Unix bash shell that was discovered in
September 2014 and allowed an attacker to achieve arbitrary code execution was identified almost
6 years later “in the wild” as there was still active malware attempting to exploit it.
A notorious 2008 vulnerability in Microsoft Server Service (MS08-67) has been known to be exploited
by the Conficker Worm reaching an estimated peak of around 9 million infected devices.

A report from Trend Micro in 2017 shows that even 10 years after its initial release about 300,000
infections occurred worldwide. In 2020, Palo-Alto estimated that the number of infected devices is
around 500,000.

Another prominent example of a vulnerability that refuses to go away is HeartBleed. CVE-2014-0160,
made public in April 2014, affects the heartbeat extension (RFC 6520) implemented in OpenSSL 1.0.1
through 1.0.1f. It can result in the leak of memory contents from the server to the client and from the
client to the server when exploited. Effectively, allowing anyone on the internet to read the memory of
the systems using the vulnerable versions of the OpenSSL software.

The fact that exploitation of the vulnerability isn’t very complex and leaves no visible trace on the
attacked machine, made the HeartBleed vulnerability one of the most impactful vulnerabilities in
recent years.

Eight years after the initial publication, according to Shodan.io, the number of potentially vulnerable
internet facing applications is over 61,000.

https://www.google.com/url?sa=D&q=https://securityaffairs.co/wordpress/125567/hacking/log4shell-log4j-exploitation.html&ust=1657332240000000&usg=AOvVaw03dRuiPw6BZ9MJFQvhGcsk&hl=en
https://www.microsoft.com/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/
https://duo.com/decipher/china-based-actors-using-log4shell-bug-for-ransomware-deployment
https://www.google.com/url?sa=D&q=https://securityaffairs.co/wordpress/126613/apt/apt35-log4shell-backdoor.html&ust=1657332240000000&usg=AOvVaw0F_aokGg8TmSmbEaumSHNi&hl=en
https://socprime.com/blog/tunnelvision-apt-group-exploits-the-log4j/
https://www.mandiant.com/resources/mobileiron-log4shell-exploitation
https://www.fortinet.com/blog/threat-research/deep-panda-log4shell-fire-chili-rootkits
https://isc.sans.edu/
https://isc.sans.edu/
https://isc.sans.edu/api/webhoneypotreportsbyurl/jndi:/2022-04-20?json
https://en.wikipedia.org/wiki/Shellshock_(software_bug)
https://blogs.juniper.net/en-us/threat-research/the-evolving-use-of-shellshock-and-perlbot-to-target-webmin
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2008/ms08-067
https://en.wikipedia.org/wiki/Conficker
https://heartbleed.com/

Rezilion
Research

www.rezilion.com VULNERABILITY ROUND UP: What Kept Security Busy in Q1 2022 | 11

Looking Ahead…
As we have seen Log4Shell is still here, and as history suggests, that might be the case for a while.
In this section we will try to give a few actionable recommendations you can take in order to better
protect your environment as well as raise some potential methods of operation that we, as an
industry, can adopt in order to minimize the time and scope of exposure for future vulnerabilities
such as Log4Shell.

Recommended Immediate Steps
➞ It is important to continuously scan your environment. Scanning and patching vulnerable

applications periodically does not ensure your environment is clear of vulnerabilities. You need
to have processes in place that continuously monitor your environment for critical vulnerabilities
with an emphasis on third-party code.

➞ If you don’t have a vulnerability management function in your organization there are quite a
few open source tools that you can integrate into your pipeline that will give you insight to your
potential attack surface. Keep in mind that these tools have their limitations. It is important to be
aware of what the tool you chose can and can’t do.

➞ In the event you do find vulnerable assets, especially given the amount of time elapsed, assume
compromise, try to identify common post-exploit activity, and hunt for signs of malicious activity.

On a Broader Level
Given the fact that Log4j is so widespread yet not always easy to detect, especially in a production
setting, it is evident that maintaining a Software Bill of Materials (SBOM) is a significant first step in
order to get visibility of potentially vulnerable applications. However, what is also clear, is that an
SBOM (as it is perceived today) is only a first step. In order for security teams to be able to effectively
track software components across the supply chain, and use the SBOM as a tool for triaging
Log4Shell like vulnerabilities (reducing time-to-detect and time-to-patch), an SBOM must be:

➞ Machine Readable in order to allow for automation. Some positive strides are being made with
standards such as SPDX and CycloneDX.

➞ Contain Security Context, an ingredient list of the software is not enough. Ideally, an SBOM
should be able to report on things like: if the package is actively maintained, if it is in an end-of-
life status, if it has a critical vulnerability, if it is exploitable in the context of the environment in
which it is running etc. Adoption of standards such as Vex (Vulnerability-Exploitability eXchange)
could help drive this change.

➞ Dynamic, not all packages in the development or CI environment find their way to production,
even those who do are not necessarily used. A dynamic oriented SBOM should have the ability to
identify which components are actually being used (loaded to memory) and which are not, thus
providing valuable context for tasks such as code debloat or risk assessment.

➞ Continuous, an SBOM should not only be generated once at a given point in time, at a specific
point in the SDLC pipeline. Instead, it should be a continuous ongoing process.

There is a constant tradeoff between stability, reliability and reproducibility, and security in the
context of using outdated packages with the balance usually falling in the side of the former.

The question is to what extent? Is there a balance that can be achieved? Should Maven Central,
in this case, or other package managers/main code repositories actively deny downloads of
vulnerable package versions for specific critical vulnerabilities? What about packages like Log4j1.x
which is almost seven years past its end of life date? At the very least, should anyone one pulling
such vulnerable components be alerted in the form of a warning message? There is no clear answer,
but we feel it is a discussion worth conducting.

https://www.rezilion.com/blog/log4j-blindspots-what-your-scanner-is-still-missing/
https://spdx.dev/

Rezilion
Research

www.rezilion.com VULNERABILITY ROUND UP: What Kept Security Busy in Q1 2022 | 12

ABOUT REZILION
Rezilion’s platform automatically secures the software you deliver to customers. Rezilion’s continuous
runtime analysis detects vulnerable software components on any layer of the software stack
and determines their exploitability, filtering out up to 95% of identified vulnerabilities. Rezilion then
automatically mitigates exploitable vulnerabilities across the SDLC, reducing vulnerability backlogs and
remediation timelines from months to hours, while giving DevOps teams time back to build.

Learn more about Rezilion's software attack surface management platform at www.rezilion.com and
get your 30 day free trial www.rezilion.com.

© Rezilion 2022 | Updated April 2022

